
CHAPTER 6

Other Learning Models:
Auto-Associators and Competitive Learning

There are a number of learning paradigms in PDP systems-each with a
characteristic goal or task. These paradigms include the pattern association
paradigm, in which the goal is to learn mappings between specific input and
output pairs; the auto-associator paradigm, in which the goal is to store
specific patterns for future retrieval; and the regularity detection paradigm,
in which the goal is to discover salient features of the ensemble of patterns.
Thus far in this book we have focused almost entirely on the pattern associ­
ation paradigm for learning. Clearly the pattern associator of Chapter 4 and
the back propagation model of Chapter 5 are both examples of systems
learning input-output mappings. The current chapter focuses on the other
two paradigms. We begin with a discussion of several simple auto­
associators and then move to a discussion of one of the most studied regu­
larity detection models, competitive learning.

THE AUTO-ASSOCIATOR

BACKGROUND

The auto-associator models are a class of related models that share the
auto-associative architecture. That is, they all consist of a single set of
units that are completely interconnected. In some ways, this architecture is
the most general architecture for a connectionist system; all other architec­
tures are more restricted subsets of this architecture. However, given the
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learning rules that we will be exploring for training these networks in the
present chapter, auto-associators are limited by the fact that they can only
train connections between units whose target activations can be specified
from outside the network.

In spite of this limitation, auto-associators have several interesting prop­
erties. They can learn to do pattern completion and to rectify or restore
distorted versions of learned patterns to their original form. They can learn
to extract the prototype of a set of patterns from distorted exemplars
presented during training. Discussions of thes'e and other aspects of auto­
associators may be found in Anderson (1977), Anderson, Silverstein, Ritz,
and Jones (1977), Kohonen (1977), and in PDP:17 and PDP:25.

The auto-associator models we will consider in this section are similar to
pattern associators, with one major difference: There is only a single set of
units, and instead of having connections from input units to output units,
each unit serves as both an input unit and an output unit, so that each unit
is connected to every other unit. In some versions, it may also be con­
nected to itself. A picture of an auto-associator is shown in Figure 1. In all
the versions of the auto-associator that we will consider here, input patterns
consist of vectors specifying positive and negative inputs to the units from
outside the network. There are no bias terms on the units. Units take on
activation values that may be positive or negative, based on these external
inputs and on the connections they receive from other units inside the net­
work. --------
FIGURE I. A simple eight-unit auto-associative network. (From "Distributed Memory and
the Representation of General and Specific Information" by J. L. McClelland and D. E.
Rumelhart, 1985, Journal of Experimental Psychology, 114, 159-188. Copyright 1985 by the
American Psychological Association. Reprinted by permission.)
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A basic understanding of the essential properties of the auto-associator
can best be achieved by considering a linear, Hebbian version of a pattern
associator in which the input patterns and the output patterns happen to be
the same. For this case we can use what we learned in Chapter 4 about the
pattern associator, noting that the associations are now between a pattern
and itself. Specifically, we recall that the output produced in response to
test input pattern it is proportional to the sum of the output patterns
experienced during learning, each weighted by the similarity of the
corresponding input pattern to the test input pattern:

(1)

The constant of proportionality, k, is equal to the learning rate parameter,
E, times the number of units in the network. Since we are considering the
case in which the training consists of associating each input vector with
itself, the training output vectors 0 I can be replaced with the training input
vectors il' In this case, the output at test is equal to the sum of the input
patterns used during training, each weighted by its similarity to the input
pattern used at test. Given this equation, we can immediately observe the
following points:

• If a test input pattern is orthogonal to all of the input patterns used
during training, then the network will produce a null output.

• If a test pattern is orthogonal to all but one of the training patterns
and is identical to this other training pattern, then the output will
be equal to the test pattern scaled by the value of k.

• If the same pattern is presented m times during learning, then it
will be as though there are m patterns" stored" in the network that
are identical to it. Therefore if this same pattern is presented as a
test input, the output will be equal to m times k times the test pat­
tern.

More succinctly, we can say that if we associate a set of orthogonal pat­
terns, each with itself, in a linear Hebbian associator, and if we test with
one of these stored patterns, then the output will be equal to a scaled ver­
sion of the input, and the scale factor will be proportional to the number of
times we have experienced the pattern during learning.

Patterns that are scaled by a network are called eigenvectors; eigenvector
simply means "same vector." The magnitude of the eigenvector, as it is pro­
cessed by the network, is called its eigenvalue. For our linear Hebbian
auto-associator trained with an orthogonal set of learning patterns, the
learned patterns form a set of eigenvectors. Their eigenvalues are kml,
where ml is the number of presentations of learning pattern I.
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Now, however, suppose that we present a pattern that has some similar­
ity to each of several different stored patterns. Then we find that the out­
put produced is a blend of these stored patterns, with the contribution of
each weighted by its similarity to the test pattern times its eigenvalue. As
an example, suppose we have stored these two patterns:

io: + 1.00 + 1.00 + 1.00 + 1.00 -1.00 -1.00 -1.00 -1.00
iI: + 1.00 -1.00 + 1.00 -1.00 + 1.00 -1.00 + 1.00 -1.00

and we test with the following pattern:

i[: + 1.00 + 1.00 + 1.00 + 1.00 -1.00 -1.00 + 1.00 -1.00

We find that the normalized dot product of pattern io with pattern i[
00, it) n is 0.75, and the normalized dot product of pattern i] with pattern it
01, i[)n is 0.25. If each has been stored exactly once and k is equal to 1.0,
then we will get as our output 0.75 timesi] plus 0.25 timesi2, so the result­
ing output pattern is

0[: + 1.00 +0.50 + 1.00 +0.50 -0.50 + 1.00 -0.50 -1.00

This vector is not the same as the input vector it, so it is not an eigenvec­
tor of this network. The response is a weighted sum of the stored vectors,
with the weights depending both on the similarity of the input to each
stored vector and on the eigenvalues of these vectors. We will see in the
exercises that when the output of the auto-associator is fed back into itself
and nonlinearities are introduced, the output can often end up exactly
matching the most similar pattern used during learning. We call this pro­
cess the pattern rectification process.

A special case of pattern rectification is what is called the pattern comple­
tion process. This is what happens when we present an incomplete vector in
which some of the + Is and -Is have been replaced by Os. Thus, if we
have previously stored patterns io and i I as above, we can present an
incomplete version of one of these patterns as a test input pattern and the
network will fill in or complete the remainder. Thus suppose we present
the following test pattern:

it: + 1.00 -1.00 + 1.00 -1.00 0.00 0.00 0.00 0.00

In this case, io' i[ is 0.0 and i 1" i[ is 0.5. The network will produce the out­
put vector 0 t ,

0[: +0.50 -0.50 +0.50 -0.50 +0.50 -0.50 +0.50 -0.50

in response to this input. Note that this vector points in the same direction
as the stored vector iI, but it is of lesser magnitude.
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In general, in completion with orthogonal input patterns and linear units
we obtain a scaled version of the incomplete stored vector that is probed,
where the scale factor is equal to the normalized dot product of the stored
vector and th-e incomplete version of it that is used as the probe.

The pattern completion and rectification processes we have been describ­
ing are general characteristics of auto-associator models. Another general
characteristic is their tendency to learn to respond better to the prototype,
or central tendency, of a set of distorted exemplars of a category than to
any of the individual distortions themselves. This characteristic arises from
the fact that each new distortion learned is superimposed in the connection
strengths; the characteristics of the individual exemplars tend to average
out as more and more exemplars are presented. This characteristic of
auto-associators is discussed at length in Anderson et al. (1977) and in
PDP:17, and is explored extensively in the exercises.

So far we have been treating the auto-associ ator as if it were a pattern
associator in which the input and output patterns just happen to be the
same. In fact, though, the input and output patterns happen to be the same
because the input and output units are really the same units. This gives the
auto-associator the capability of multiple processing cycles in which the ini­
tial pattern of activation is produced by some external input, and each suc­
cessive cycle involves updating the activations of the units, based on the
continuing external input, plus what we call the internal input-the input to
each unit via the connections internal to the net. The internal input to unit
i, intinputi, is given by

intinputi = LWi}aj•
J

This internal input is equivalent to the output that would be produced by a
linear pattern associator. In the auto-associator, it is combined with the
continuing external input to each unit, and is then treated in different ways
in the different variants of the auto-associator model, which are described
later.

Learning Regimes for Auto-Associators

Both the Hebb rule and the delta rule are available for use in auto­
associator models. When the Hebb rule is used, the external input is
assumed to be clamped onto the units for the purpose of training. In this
case the formula for updating the weights is

11wi} = E: (extinputi) (extinputj).

When the delta rule is used, the external input pattern is applied at the
beginning of time cycle 1 and is left on. Processing goes on for ncycles. At
the end of ncycles, a variant of the delta rule is used to adjust the strengths
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of the connections in the network. In this variant, the goal of learning is to
have the internal input to each unit match the external input. In this case,
the error m_easure for each unit, error;, is defined to be

error; = extinput; - intinput;

where the intinput; is the value at the end of ncycles of processing, based on
the activations at the end of the preceding cycle.

In the general formulation of the auto-associator, each unit is assumed to
be connected to every other unit, including itself. In networks with large
numbers of units, these self-connections are unimportant, but in smaller
networks trained with the delta rule, where the goal is to learn connections
that foster pattern completion and rectification, strong self-connections can
tend to defeat learning. This is because self-connections allow units to
predict their own activation, thus reducing the error and preventing the net­
work from learning strong between-unit connections that can perform the
completion and rectification processes. Thus, when the delta rule is used in
an auto-associator, it is best to force the connection from each unit to itself
to remain fixed at O.

Limitations of the Auto-Associator

The limitations of the auto-associator are similar to the limitations of the
pattern associator. When trained using the Hebb rule, perfect reproduction
of learned patterns can only be obtained if orthogonal patterns are used;
with non orthogonal patterns there is always some cross-talk between the
patterns. When trained using the delta rule, the learning process converges
only if the following linear predictability constraint can be met:

Over the entire set of patterns, the external input to each unit must
be predictable from a linear combination of the activations of each
unit that projects to it.

This constraint, for example, prevents the auto-associator without hidden
units from learning to turn on a unit when two other units are both on or
both off, while at the same time turning the unit off when one of the two
other units is on and one is off.

Auto-associators can be constructed in which there are hidden units, of
course; a simple example is described at the end of PDP:17. More gen­
erally, encoder networks as described in PDP:5 are examples of auto­
associators with hidden units. The auto-associator models used in the
present chapter, however, do not contain hidden units.

In the sections that follow, we describe three main variants of the auto­
associator. All of these will be considered in the exercises.
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The Linear Auto-Associator

Perhaps th~ simplest variant of the auto-associator is what we will call the
linear auto-associator. In this model, the change in activation of each unit
on each processing cycle is a weighted sum of the external and internal
inputs to the unit, less a decay term that tends to restore activation to a
resting level of 0:

tlaj = (estr )extinputj + (istr )intinputj - (decay)aj. (2)

Note that the extinputj and intinputj together make up the net input to
unit i (there is no bias term). The parameters estr and istr scale the contri­
butions of the external and internal input to each unit, as in the constraint
satisfaction models considered in Chapter 3.

This model is mathematically very simple, and it is typically used in the
following way. At some time t = 0, activations of all units are set to O. At
the beginning of cycle I, a pattern of +Is and -Is is supplied as the exter­
nal input and is left on until the end of ncycles of processing. On the first
cycle of processing, since the prior activations of all the units are all 0, each
unit takes on an activation equal to estr times the external input pattern.
After that, processing proceeds in accordance with Equation 2. For simpli­
city, we will study the case in which the decay parameter is set to 1.0. In
this case, the activation of each unit at time t (a; (t)) is given by

aj (t) = (estr) extinput; (t) + (istr) intinput; (t ).

Here intinputj (t) is based on the activations of the units at time t-l.

A Difficulty with the Linear Auto-Associator

The linear auto-associator model is very useful for illustrating the basic
pattern completion and regularization processes described above. A diffi­
culty, however, is that the network can "blow up"; that is, activations can
become very large, very quickly as a result of the self-reinforcing feedback
characteristic of the network. When the model is run with ncycles equal to
2, this is not a problem. With larger values of ncycles, some form of non­
linearity must be introduced. The next two variants of the auto-associator
involve introducing different types of nonlinearity into the basic model.

The Brain-State-in-the-Box Model

One form of nonlinearity that keeps activations from growing without
bound is introduced in the" brain state in the box" or BSB model proposed
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by Anderson et aI. (I 977). In this model, activations are prevented from
growing larger than +C or smaller than -C. In our version of this model,
we will use C = 1.0.

The effect of this "clipping" operation, of course, is to prevent activa­
tions of units from growing without bound; instead it keeps them in a
hypercube, or box, bounded by + 1.0 and -1.0 on each dimension. Small
inputs may still be amplified by the network, but when the activations of
the units reach + 1.0 or -1.0, they are simply cut off. This has an interest­
ing side effect: It means that processing tends to result in patterns of activa­
tion that correspond to corners of the hypercube, that is, states that consist
of all + Is and -Is. The corners tend to correspond to the patterns that had
previously been learned. In this case, as we shall see in the exercises, the
auto-associative process tends to drive incomplete or distorted versions of
stored patterns toward the stored patterns, producing perfect rectification
and completion.

In the version of the BSB model that we shall consider in the exercises,
the learning rule is the same as in the linear model already described. It is
also possible to use the variant of the delta rule described earlier with the
BSB model.

The DMA Model

The final auto-associator model we will consider is the model of distribu­
ted memory and amnesia described in PDP:17 and PDP:25. Here we call
this model the DMA model. This model grew out of our work with the
interactive activation and competition scheme described in Chapter 2. In
this model, we think of the combined external and internal input to each
unit as driving the activation of the unit upward or downward, depending
on whether it is excitatory or inhibitory. The magnitude of the effect of
the input is dependent on the distance to the maximum or minimum
activation value. First we define the net input to unit i:

netinputj = (estr )extinputj + (istr )intinputj.

If the net input is positive,

!:!.aj = netinput (max - aj) - (decay )aj,

and, if it is negative,

!:!.aj = netinput (aj - min) - (decay )aj'

This model is similar to the BSB model in that activations are kept
between the values of max and min, which are set to + 1.0 and -1.0. The
main difference is that activations always level off at less extreme values,
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since at some point the "restoring" force of the decay term will match the
"perturbing" force of the net input term_

Learning in the DMA model takes place using the variant of the delta
rule we described earlier. In this rule, when the error is 0, the internal
input to a unit matches the external input, and the total net input to a unit
is the sum of the istr and estr parameters times the external input:

netinput; = (estr + istr )extinput;_

In contrast, before learning, when the internal input is 0, we find that the
net input is simply

netinput;= (estr )extinput;.

The effect of this difference is to change the asymptotic activation values of
the units. From our consideration of the interactive activation and com­
petition model of Chapter 2, we recall that at asymptote, the activation of a
unit is given by

netinput;
a· = --------

I netinput; + decay·

Before learning, then,

(estr )extinput;
a- = ---------

I (estr )extinput; + decay'

while after learning,

(estr + istr )extinput;
a- = ------------.

I (estr + istr )extinputi + decay

In most of the simulations reported in PDP:17 and PDP:25, estr, istr, and
decay were all set to 0.15, and external inputs used in training patterns are
always patterns of + Is and -Is. This means that before learning, units
take on activations of 0.50 times the sign of the external input; after learn­
ing, this value grows to 0.67. These values, of course, can be moved
around at will by changing the values of estr, istr, and decay. The basic
point is that the network is more strongly activated by familiar patterns
than by unfamiliar ones. It also exhibits pattern completion and rectifica­
tion, as in the other variants of the auto-associator.

IMPLEMENT ATION

The auto-associative models are implemented in the aa program. In this
program, processing is implemented much as it is in the iac program
described in Chapter 2. The main difference is that in aa the output of a
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unit is identical with its activation; there is no check to see that the activa­
tion exceeds threshold. Both positive and negative activation values exert
influences on other units.

What the -aa program adds to iac is an outer loop that runs epochs of
training trials. In each trial, after ncycles of processing, the error measure is
computed and the connection strengths are modified. The routines for
doing this are analogous to those used in the pattern associator.

RUNNING THE PROGRAM

The aa program is run in much the same way as the programs already
described. The program is called with a .tem file and a .str file. Because of
the simplicity of the aa architecture (each unit connected to every other
unit), a .net file is not needed; instead, nunits is defined near the top of the
.str file. This leads the program to create a network of nunits units, with a
connection from each unit to itself and every other unit. Generally, a .pat
file is used to specify a list of patterns for use in training and testing.

The .str file generally specifies the size of the net (nunits) and specifies
which of several possible modes should be on or off. The DMA model is
the default. The linear Hebbian model can be studied by setting linear

mode to 1 and by setting the hebb mode to 1. You can study the BSB
model by setting the bsb mode to 1. There is also a self connect mode,
which is set to 0 by default; in this mode the weight from a unit to itself is
forced to remain at 0.0. To study the effects of allowing nonzero self­
connections this mode can be set to 1.

The facilities for training and testing are the same as those used in the pa
and bp programs. The strain command is used to train the network using a
fixed sequential order of training in each epoch. The ptrain command is
used to train the network using a permuted order of presentations in each
epoch. Both commands run nepochs of training, ending when interrupted
or when the total sum of squares tss becomes smaller than the criterion
ecrit.

During training, it is possible to specify that the training patterns should
be randomly distorted. In aa, distortion is done by independently changing
the sign of each bit (from + to - or from - to +) in each training pattern
with probability pjlip before it is presented to the network for training. A
pjlip of 0 produces no changing; a pjlip of .5 produces totally random pat­
terns. Note that this method of distortion is different from the one pro­
vided in the pa program.

To test the network, the test command allows testing using either one .of
the stored patterns, a distortion of one of these patterns, or any pattern
entered directly as a sequence of +'s and - 'so At the end of ncycles of pro­
cessing, the normalized dot product of the input with the output, the nor­
malized length of the activation vector produced, and the correlation of the
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output with the external input are displayed. The ctest command is used for
testing the pattern completion capability of the model. It allows the user to
specify a part of a pattern to clear to see how well the model can do in fill­
ing it back in again. In this case the ndp, nvl, and vcor measures apply to
the subpattern of activation filled in by the network on the cleared units
rather than to the overall pattern of activation.

New or Altered Commands

The following list mentions only those commands in the aa program that
are not the same as commands in the pa program.

ctest

Allows the user to perform a completion test on an individual pat­
tern. The user specifies which input units to clear, (that is, to set
to 0) for completion testing. The ctest command prompts for a pat­
tern name or number to test, then asks for a first element to clear
(a number from 0 to nun its - 1), and then asks for a last element to
clear (the last element must be greater than the first and less than
nunits). Both the beginning and the end elements given are
cleared, as well as all the units in between. The statistics computed
(ndp, nvl, and vcor) will apply to the cleared portion of the pattern,
assessed against the pattern that would have been present had these
bits not been cleared.

test

Allows testing of an individual pattern. The following arguments
can be given:

#N Instructs test to use the corresponding pattern from the pattern
list (N is a pattern name or number).

?N Instructs test to use a distorted version of the corresponding
pattern (N is as above). Each element has its sign flipped with
probability equal to the value of the pj/ip parameter.

L Instructs test to use the last pattern tested; this pattern is left
in place.

E Instructs test to accept a pattern entered by the user. Pattern
elements are floating-point numbers or ".", "+", or "-",
corresponding to 0.0, +1.0, and -1.0. Elements must be
separated by spaces and the list of elements must be ter­
minated by end or an extra return.

get / patterns

Reads in a pattern file containing a list of pattern specifications.
Each pattern specification consists of a pattern name followed by
nunits entries indicating the values of each element of the pattern.
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Entries can be floating-point numbers or If +" (for 1.0), If_If (for
-1.0), or If.If (for 0.0).

get / rpatterns
Causes the program to construct a set of random patterns (vectors
of + Is and -Is) with a specified probability that each unit will be
+ 1. Prompts for two arguments as follows:

How many patterns?
(give desired number of patterns to construct)

make input + with probability:
(give desired probability for elements to be positive)

This list is stored in the program's internal ipattern list and can be
saved using the savel patterns command. Patterns are assigned
names of the form rN where N is the pattern number.

savel patterns
Allows the user to save the patterns in the program's pattern list in
a file.

The aa program does not provide a cycle command to continue cycling if
you wish to run more cycles with the test or ctest commands. Instead you
must set ncycles to a larger number and run the test or ctest command again.
With test you can enter L as the argument to exactly repeat the previous
test.

Variables

The following list mentions only those variables that are new or different
in the aa program. As usual, all of the variables are accessed via the set/
and exam/ commands.

stepsize
The default stepsize in aa is pattern. This means that a step consists
of presenting an input pattern as the external input, resetting all the
activations in the network, running ncycles of processing, computing
error information and summary statistics, and changing weights if
ljlag is set. Other possible values of stepsize are cycle, which causes
updating/ pausing to occur after each cycle; epoch, which causes
updating/ pausing to occur only at the end of an entire processing
epoch; and nepochs, which causes updating/ pausing to occur only at
the end of nepochs.

mode / bsb

When bsb is set to 1, activations are clipped at + 1 and -1. This
mode has no effect unless the linear mode is also in force since



6. AUTO-ASSOCIATORS AND COMPETITIVE LEARNING 173

activations are otherwise restricted to the [1, -1] interval by the
DMA activation equations.

mode I hebb

When hebb is set to 1, the program uses the Hebbian learning rule.
When hebb is 0 (the default), the delta rule is used.

mode I linear

By default, the activations are updated according to the DMA
activation equations. When linear is set to 1, the activation process
is linear, subject to clipping at + 1and -1 if bsb mode is also set.

mode I self connect
By default, when selftonnect is 0, the weight from each unit to itself
is fixed at 0.0. When self connect is set to 1, self-connections are
trained just like all other connections in the network.

paraml estr
Scales the magnitude of the external input to each unit. The scal­
ing is applied in determining the net inputs to the units but is not
applied in computing errors.

paraml istr
Scales the magnitude of the internal input to each unit. Scaling is
applied as with estr.

paraml Irate
The learning rate parameter. Generally, its value should be less
than II nunits .

paraml pjlip

The probability that pattern elements have their signs flipped dur­
ing training and when flipping is requested in using the test com­
mand.

state I error
Vector of errors for each unit. Each element is the difference
between the unit's external input and its internal input.

state I extinput
Vector of external inputs to units. Note that this is displayed
before the effects of scaling the external input by the estr parameter
are applied.

state I intinput
Vector of internal inputs to units from other units. Note that this
vector is displayed before the effects of scaling the external inputs
by the istr parameter are applied.

statel ndp
Normalized dot product of the current external input pattern with
the current activation pattern. Updated at the end of every cycle
when stepsize = cycle or at the end of every epoch otherwise.

state I nv/

The normalized length or strength of the activation vector.
Updated like ndp.
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state/ prioract
Vector of activations from the preceding processing cycle.

state / vcor
The vector correlation of the present pattern of activation with the
external input. Updated like ndp.

OVERVIEW OF EXERCISES

We provide four exercises for use with the different auto-associator
models. Ex. 6.1 explores the linear Hebbian associator and examines its
handling of sets of orthogonal patterns. Ex. 6.2 explores the BSB model
and its pattern completion and reactivation capabilities. Ex. 6.3 examines
the linear auto-associator with delta rule learning, focusing on exploring the
characteristics of ensembles of patterns that influence whether they can be
learned in a one-layer auto-associative network. Finally, Ex. 6.4 examines
some of the psychological characteristics of auto-associator models, and
allows the user to run variants of several of the examples discussed in
PDP: 17 (pp. 182-192).

Ex. 6.1. The Linear Hebbian Associator

In this first exercise, you can familiarize yourself with the use of the aa
program and study the effects of learning sets of patterns in the linear Heb­
bian auto-associator.

To start you off, we have provided the following relevant files: Ih8.tem,
Ih8.str, and two.pat. The Ih8.str file sets up a linear Hebbian auto-associator
with eight units. It sets hebb mode to 1, sets linear mode to 1, and sets
self connect mode to 1. It sets several parameters to values that make the
behavior of the auto-associator particularly transparent. The decay variable
is set to 1.0. This means that the activation on each trial is simply the sum
of the external input (which is turned on and left on throughout process­
ing) and the internal input from the units in the network, based on the pat­
tern of activation achieved at the end of the previous cycle of processing.
The istr and estr parameters are set to 1.0, so the net input is equal to the
sum of the external input plus the internal input. The Irate parameter is set
to 1/nun its , or 0.125. This means that in one learning trial, weights that
give each of several orthogonal patterns an eigenvalue of 1.0 will be stored
in the network. For initial testing, the file two.pat is supplied with two
orthogonal patterns named a and b.

To run the program, you type:

aa Ih8. tern Ih8.str
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The resulting screen display is similar to the display for the pa program.
The left column displays some of the prominent variables relevant to the
Hebbian aut()-associator. The first three are the pattern number, the cycle
number, and the epoch number. Below these are the normalized dot pro­
duct of the activation vector with the external input, the normalized length
of the pattern of activation, and the correlation of the pattern of activation
with the external input vector. To the right of these variables is the weight
matrix. This matrix shows the value of the weight from the unit in each
column to the unit in each row. These values are multiplied by 100, so 10
means 0.10 and 100 means 1.0. Of course, reverse video indicates negative
numbers as in other programs. To the right of the weights are the external
input pattern, the internal input pattern, and the activation pattern that
results from these inputs. All these are scaled by 100 as well, so that 100
stands for an actual value of 1.0. Below the weight matrix, the prioract vec­
tor is displayed. This vector represents the pattern of activation that was
present at the end of the previous processing cycle. Like the activation vec­
tor, this vector is initialized to 0.0 at the beginning of processing each input
pattern.

The display shown in Figure 2 shows the results of the first cycle of pro­
cessing pattern a from the file two.pat. The file two.pat was read in by
entering get/ pat/ two.pat, and then single was set to 1. Following this, the
command strain was entered. This command runs nepochs of learning, but
for the example nepochs is set to 1, so each pattern will be presented for
learning only once as a result of entering this command at this point. After
the strain command was entered, the program set the external input to

P to push!1>to hreak/<cr> to contlnue: •
disp/ exam/ get/ save/ set/ clear ctest do log newstart ptrain quit
reset r~m strain tall test

welghtsext int actpnalJ\eipattern
cpnalJ\e

a00000000 100o 100a
1Dtir~cycleno

100000000 !liEo !liEb11 1 1
epochno

100000000 100o 100
ndp

1.000000000000 !liEo !liE
nvl

1.000000000000 100o 100
·cor

1.000000000000 100o 100
0

0000000

IHOle0
0000000 IIo ••

prioract

00000000

FIGURE 2. The display produced by aa with an eight-unit network while processing an input
pattern before any learning has taken place.
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equal pattern a (the vector +-+-++--) during the first cycle of process­
ing and set the activations of the units based on these external inputs, then
paused with the display shown in Figure 2.

The dispiay indicates that the weights are all as, that the external input is
a pattern of +Is and -Is, matching the first input pattern, that there is no
internal input, and that the activations of the units are + 1 and -1, match­
ing the external input. The activations are equal to the external inputs
since the network is linear and estr is equal to 1. So far no internal input
has been generated ..

To run another cycle, simply type return. In this case nothing changes:
the external input is still the only thing influencing the activations of the
units because the weights are all O. Since ncycles is set to 2, this is the end
of processing the first pattern.

At this point, another return results in the first pattern being stored in
the weights using the Hebb rule. The display that is presented at this point
reflects the new values of the weights, as well as the external input that
gave rise to them, and the pattern of activation at the end of the preceding
processing cycle. Note that the value of the learning rate parameter at this
point is 1/nunits, or 0.125, as specified in the Ih8.str file.

Q.6.1.1. Make sure you understand the weight matrix. First, be sure you
know which is the receiving unit and which is the sending unit for
the weight shown in row 3, column O. Look at the weights in row
3 of the weight matrix. Why do they have these values? Be sure
to explain both the sign and magnitude of the weights.
(Remember that the values of the weights are displayed as hun­
dredths and are truncated to only two places, so 12 corresponds to
0.125.)

When the next return is entered, the activations are cleared, the second
pattern is presented so that its values now appear on the external input, and
the first processing cycle is run. At this point the activations reflect the
external input alone because there has not yet been a chance for activation
to propagate through the connections. After the next return, however, the
pattern of activation at the end of cycle 1 has had a chance to generate ex­
citatory and inhibitory influences on other units by way of the connections
in the network. The reader will note, however, that the internal input to
each unit is still 0 at this point.

Q.6.1.2. Explain why the internal input to each unit is 0, even though each
unit is producing a nonzero contribution to the net input of every
unit.

After another return, the second pattern is stored in the weights, and the
resulting matrix of weights is displayed. Type one more return to get back
to the aa: prompt.
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Q.6.1.3. Describe and explain the weights in row 2 of the weight matrix.

You have now completed training the network once with each of the two
patterns in the file two.pat, and you are ready to see what happens when
you test these two patterns. To do this you should use the tall command:
when this command is executed, no learning occurs. The patterns are
presented in sequential order and processed just as before, but there are no
changes made to the weights.

Q.6.1.4. What happens when each of the two learned patterns is pro­
cessed? Explain.

Now you are ready to try a training experiment of your own. Using the
file two.pat as your model, generate your own set of four orthogonal pat­
terns; include in the set the two patterns in two.pat. Read it into the net­
work using the get/ patterns command. (We supply a file called four.pat
that can be used, but it is better to make up your own.) Test all four pat­
terns using tall (see Q.6.1.5 below), based on the weights obtained by train­
ing with the patterns in two.pat.

You can use the strain command to train the network with this new set
of patterns on top of the connection strengths obtained by training on the
two.pat patterns. The new changes to the weights will be added to the
changes that are already in place from the first training set. This means
that two of the patterns will have been learned twice, whereas the other two
will have been learned once each.

Q.6.1.5. Display your set of four orthogonal patterns. Explain what hap­
pens when you test each of these four patterns, both before and
after learning. Also, describe and explain what happens when you
test the network with a vector that is equal to -1.0 times one of
the stored vectors. Refer to the facts about eigenvectors in your
explanation ..

Hints. You can use the test command to enter the vector for this last
part of the question.

Q.6.1.6. Set the number of processing cycles (ncycles) to 4, and use the test
command to test one of the new (once-learned) patterns and one
of the old (twice-learned) patterns. What happens with each?
Explain.

Now construct a set of eight orthogonal patterns of + Is and -Is (hint:
one of the vectors must be all + Is or all -Is). Reset the weights to 0
using the reset command, set ncycles back to 2, and train the network
through one training epoch on all eight patterns, using the strain command.
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Q.6.1.7. Describe the set of weights that results from this training experi­
ence. What will happen at this point if you present an arbitrary
vector of + Is and -Is? Explain both in terms of the weights in
the network and in terms of the eigenvectors of the network.

Ex. 6.2. The Brain State in the Box

One of the flaws of the linear Hebbian associator is that it can "blow up,"
as you will have seen in Ex. 6.1. You can overcome this limitation, how­
ever, by using the brain-state-in-the-box model; that is, by simply stipulat­
ing that units have maximum and minimum activations that cannot be
exceeded. Our implementation arbitrarily sets these as + 1.0 and -1.0.
You can implement this model by using the following command:

aa: set mode bsb 1

Under these circumstances, it is more interesting to start with weaker
external inputs so that they have some room to grow before they are
clipped off at the corners. You can make the external inputs weaker by
using the estr parameter. For example, setting it to 0.1 will mean that an
external input specified as having a magnitude of 1.0 will actually only add
0.1 to the net input of the unit receiving it. Note that the extinput column
in the display gives the external input specification before multiplication by
estr.

The file bsb8.str turns on bsb and sets estr to 0.1, so you can set up for
this exercise by restarting the program with the command:

aa Ih8.tem bsb8.str

Completion and rectification. In this part of the exercise, you will see
how the BSB model's corner-seeking characteristics lead to the pattern com­
pletion and rectification capabilities of this type of auto-associative network.
First, train your BSB network with the two patterns in the file two.pat. Run
the network for two training epochs. (It's easiest to just run the strain com­
mand twice.) At this point the weights should have values of +0.5, -0.5,
and 0.0. You may notice what looks like an anomaly; the external activa­
tion is shown as + 1.0 (100) and -1.0 (reverse video 100), but the internal
input is ±0.1, and the activation is only ±0.2. This is because the estr
parameter is set to 0.1. Thus, external inputs with an absolute value of 1.0
only add 0.1 to the net input.

At this point, you should set ncycles to 8. Now you're ready to do the
following tests.

Q.6.2.1. Use the tall command to test the two learned patterns. Describe
and explain the time course of build-up of activation of the units.



6. AUTO-ASSOCIATORS AND COMPETITIVE LEARNING 179

Explain in terms of the eigenvalues of the stored patterns and in
terms of the BSB activation assumptions.

Q.6.2.2. Use the ctest command to present the pattern +-+- .... (This
is pattern a with elements 4 through 7 cleared.) Describe the time
course and build-up of activation of the units in terms of the
similarity of the input pattern to the two stored patterns.

Q.6.2.3. Present the pattern +-+-++-+ using the test command. This
pattern is identical to pattern a except for the last element.
Describe the time course and build-up of activation of the units.
Specifically explain the activations of units 6 and 7 at the end of
cycles 1, 2, 3, 4, 5, and 6.

Prototype learning and self-connections. In this exercise, we will see
how the BSB model can be used to learn the prototype of a set of training
experiences. For this purpose, reset the weights in the network and read in
the patterns in the file bsb8.pat. This file contains eight patterns, each
made by changing a different bit in the pattern +-+-+-+-. Set ncycles
back to 2, and train the network for one epoch using these patterns. Note
that during this training, the network sees eight different distortions of the
prototype and never sees the prototype itself. After training, set ncycles
back to 8 before testing.

Q.6.2.4. Test the network with one of the eight training patterns and with
the prototype pattern (using the test command). Describe what
happens in each case and explain, referring to the values of the
weights. Explain the values of the weights in terms of the corre­
lational character of Hebbian learning.

Ex. 6.3. The Delta Rule in a Linear Associator

This exercise allows you to explore the delta rule in a linear auto­
associator. First you will get a chance to develop your own set of training
patterns that are not orthogonal yet still "solvable" in an auto-associative
network. Then you will get a chance to try to break the network by finding
a set of patterns that the network cannot solve.

When learning using the delta rule, there is always a trivial solution to
any auto-associator problem as long as there are self-connections of the
units: The trivial solution is to make the self-connections large enough so
that each unit essentially generates its own internal input to match the
external input it receives from the outside. In many cases (as you can
demonstrate in the exercises) the network will in fact make use of this
situation to set the self-connections to 1.0. For this reason, the delta rule is
typically used without self-connections in an auto-associator.
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Begin this exercise by constructing a set of three non orthogonal patterns
that are learnable by the network. One possibility is to generate such a set
at random, using the get/ rpatterns command. Of course, if you do this you
will have to check to make sure that they are learnable. Alternatively, you
can try constructing a set on your own.

For this exercise you will begin by calling the program with the dr8.tem
and .str files:

aa dr8.tem dr8.str

The template file differs from the one you have been using up to now only
in that it displays the pss (pattern sum of squares) and tss (total sum of
squares) measures. The dr8.str file sets linear mode to 1, but all other
modes have their default values; in particular, hebb mode and self connect
mode are both off. Since training takes several epochs to run to comple­
tion, the file also sets stepsize to paitern and sets nepochs to 10. This means
that the display is updated only once for each pattern after cycling and
changing the weights. The ncycles variable is set to 2. The activation at the
end of processing reflects the sum of the external input and the internal
input generated by the activations produced by external input on cycle 1.
When the internal input matches the external input, the error term is O.

Thus, when then network has "solved" a set of training patterns, the activa­
tions will equal twice the external input. Finally, the Irate parameter is set
to 0.05; large values result in overshooting weight changes, which can lead
to disaster.

The linear predictability constraint. The first exercise is to generate
your set of three nonorthogonal but still learnable patterns, and present
them to the network for learning. Study what happens to the pss and tss
measures (you may want to set single to 1 to do this). Run the learning pro­
cess to the point where the tss becomes less than 0.001 (strain terminates
when this occurs since ecrit is set to 0.001), and compare the resulting
weights to those that you obtain if you teach the network the same set of
patterns for 10 epochs using the Hebb rule.

Q.6.3.1. Display your three patterns, and discuss the two weight matrices
you obtained. In what ways is the matrix obtained using the delta
rule similar to the matrix obtained using Hebbian learning? How
are they different? Explain.

Hints. We supply a set of patterns in dr8.pat, which you may use if you
wish. One of the things you will observe in the delta rule solution
is that the weights on each row of the weight matrix add up to
0.99; when the problem is completely solved, and if you could see
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all the decimal places, they would add up to 1.0. This is not the
case in the Hebbian matrix. Your answer should include an

explanation of this fact.

An unsolvable set of patterns. This exercise is a little more difficult.
The task is to construct a set of patterns such that there is no set of weights
that will reduce the tss to O. You will want to test your set of patterns, of
course, to be sure that it cannot be solved. Run strain until it is clear that
the tss is not getting any better. We supply a file called imposs.pat contain­
ing a set of patterns that cannot be learned, but it is better to make up your
own.

Q.6.3.2. Display your set of unsolvable patterns, and explain how you
arrived at this set. Then show the set of weights obtained by the
network and indicate where the problem lies in solving the set of
patterns.

Hints. It is possible to construct unsolvable sets of only two patterns, in
which the two patterns are identical except for a single unit; this
unit cannot then be predicted from the other units. These cases
are somewhat trivial, since they would be unsolvable by any net­
work. More interesting are the cases that involve, say, four pat­
terns. Here, sets can be constructed that could be solved by a
learning mechanism that can make use of hidden units, but not
by a one-layer associative network. For simplicity, it is
worthwhile to focus on constructing a set of patterns in which
only one of the units is "unsolvable." It may be necessary to set
the Irate to 0.01 to avoid wild oscillations of the weights.

Q.6.3.3. What happens if you set up the network so that two units are per­
fectly correlated with each other but neither can be predicted by
any of the other units? Discuss the implications of this for using
the auto-associator as a pattern completion device.

Ex. 6.4. Memory for General and Specific Information

Our final exercise with the aa program allows you to explore the version
of the auto-associator discussed in PDP:17 and PDP:25-the DMA model.
You should be able to use the program to set up and replicate all of the
simulation experiments described in PDP:17 and PDP:25. We have pro­
vided files to allow you to repeat variants of several of the examples



182 THE AUTO-ASSOCIATOR: EXERCISES

discussed in PDP:17 (pp. 182-192). These examples illustrated the follow­
ing aspects of the DMA model:

1. The-model can extract what appears to be the prototype, or central
tendency, of a set of patterns if the patterns are in fact random dis­
tortions of the same base or prototype pattern.

2. The model can do this for several different patterns, using the same
set of connections to store its knowledge of all of the prototypes.

3. This ability does not depend on the exemplars being presented with
labels.

4. Representations of specific repeated exemplars can coexist in the
same set of connections with knowledge of the prototype.

The examples discussed in PDP:17 were formulated on a 24-unit auto­
associator. Patterns presented to the network consisted of an eight-unit
name field and a 16-unit visual pattern field. Because the weights for a
24-unit associator cannot be displayed conveniently on the screen, the ver­
sions of these examples considered here use a 16-unit associator that imple­
ments only the visual pattern field from the PDP:17 examples.

Learning a prototype from exemplars. We have already explored this
capability in Ex. 6.2, using a systematic set of distortions. In this instance
each distortion is a random variant of the prototype. A single prototype
pattern-taken, for concreteness, to represent the typical dog-is distorted
randomly on each learning trial by changing the sign of each element of the
external input with a probability given by the value of the parameter pjlip.
The weights are adjusted after each pattern according to the delta rule. In
PDP:17, we imagined that the learning rate parameter was rather large, so
that immediately after the weight adjustment the weights reflected the new
exemplar, but that each new increment decayed to a fraction of its initial
value before the next pattern was presented. Here we simply set the learn­
ing rate parameter to a small value so that the weight increments already
reflect the assumed decay.

The parameter values used in this simulation are as follows: estr = 0.15,
istr = 0.15, and decay = 0.15. The learning rate parameter Irate and the
distortion rate parameter pjlip are set initially to 0.011 and 0.2, respectively,

I Careful reading of the text of PDP:17 suggests that the example described in the section
'"Learning a Prototype From Exemplars'" would have used a learning rate of (0.05)(0.85)/ (nun­
its - 1) which is about 0.002. This is not correct; a value of 0.01 reproduces the results
described more closely, so we have used the latter value here. The difference is one of the
magnitude of the impact of each distortion to the weights and does not affect the qualitative
character of the results.
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but the experiments we suggest involve manipulating these parameters.
Also, the number of processing cycles run in processing each pattern
(ncycles) is set to 10 for these examples. Larger values will allow the net­
work to settle closer to asymptotic activation values but do not affect the
results materially so we use a smaller value to save computing time.

The example is carried out using the dma.tem and dma.str files to set up
the screen layout and set the parameters to the appropriate values. Then
the file dog.pat is read in using the get/ patterns command. The screen lay­
out is rather cramped so that all of the information displayed previously still
fits. To train the network with a seiies of distorted exemplars to the dog
prototype, simply enter the strain command. You will want to enter it twice
to complete 50 epochs. The prototype and an approximate characterization
of the weights that should result are shown in Figure 3. Note that the
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FIGURE 3. Weights acquired in learning from distorted exemplars of a prototype. (The pro­
totype pattern is shown above the weight matrix. Blank entries correspond to weights with
absolute values less than 0.01; dots correspond to absolute values less than 0.06; pluses or
minuses are used for weights with larger absolute values.) (From "Distributed Memory and
the Representation of General and Specific Information" by J. L. McClelland and D. E.
Rumelhart, 1985, Journal of Experimental Psychology, 114, 159-188. Copyright 1985 by the
American Psychological Association. Reprinted by permission.)



184 THE AUTO-ASSOCIATOR: EXERCISES

display you will see on your screen corresponds to the lower left 16 x 16
entries in this figure.

At the end of 50 epochs, test the network using the test command. Test
it on the last exemplar studied (using the L option with test), on the proto­
type (by entering #dog to the prompt), and on two or three new distortions
(by entering ?dog to the prompt). Pay particular attention to the ndp mea­
sure. Then set nepoehs to 1 and run several more individual epochs of
training, testing the model as just described after each epoch.

Q.6.4.1. Compare the weights you obtain to the results shown in Figure 3.
Are they qualitatively similar? Also describe the results of the
tests. Discuss the sense in which this model is sensitive both to
the prototype and to recent, specific exemplars.

Q.6.4.2. Repeat the experiment using larger and smaller values of Irate and
larger and smaller values of pjlip. Describe the results and
explain. Note that the network will repeat the exact same series
of distortions on successive runs in which pjlip is not changed if
reinitialization is done with reset; a new series of distortions will
occur if newstart is used to reinitialize. If pjlip is decreased (or
increased) and reset is used, the distortions should be a subset (or
superset, respectively) of the distortions from the previous run.

Learning several categories without labels. This example allows you to
replicate the dog-eat-bagel example discussed on pages 184-189 of PDP:17.
Once again the name field will not be used, so that the experiments will be
most comparable to those discussed in the section "Category Learning
Without Labels" in PDP:17.

In the dog-eat-bagel example, there are three prototypes: the same one
you have been using as the dog and two new ones-the cat, similar to dog,
and the bagel, orthogonal to both of these. The network is trained using
distortions of each of these, with pjlip set to 0.1. The prototypes and the
weights that resulted from training with both name and visual patterns are
shown in Figure 4, and the results of learning the three prototypes without
names are reproduced in Table 1.

To run the exercise, increase nepoehs and set the Irate and pjlip parame­
ters to 0.01 and 0.1, respectively. Use newstart to reinitialize the network,
and read in the three patterns from the file deb.pat using the get! patterns
command. Then run 50 training epochs.

Q.6.4.3. Compare the weights you obtain to those shown in the lower right
portion of Figure 4. Are there any systematic differences? Why
might such differences occur?

Q.6.4.4. Use the test command to enter the probes shown in Table 1, and
compare the pattern of activation you obtain to that shown in the
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Prototypes

Dog:
+ - + - + - + - + - + + - - - - + + + + + - - -

Cat:
+ + - - + + - - + - + + - - - - + - + - + + - +

Bagel:
+ - - + + - - + + + - + - + + - + - - + + + + -

Weights

-1 +5-3 -2
-1 +3-1-1-2
-1 -1 -1 +2 -1 -1+3-2-1 +3+3 -1-1-3+1-1+3+3

-1 +3-3
-1 +3-3

-1-1 -1 -1

-1 -2 -1 +1+3
-2+2 +1+3+1-1-1

-1-2+1-5-1+2-1+5
+1 +4 -1 -2

-1+2

-3-1 -3+3
+1 -5 -1-1+4

-1

+1-1-1
+2+3

+5-2-1 -3+2-1
-1 -1 +1-1 -1

+1

+1

+3

+1-1
+2*-1 -1
-1+4*

+5

-1 -1 +2
+1

-1-1
-2

-1-2 -1
-1

+3-1-1

+3-2 -3+2 +1 +3+1 -1
-3-1 +3+3+1-1-2-2+1-1 +2

+1-3 -1-3-3 +1+3-1 -1-2+2
+3-1 +1 -2-1 -2+2-1 +2+1-1
-3 -3 +1+2-3 -1-2-1+1
-1 +2-2 +1 +2+1-1 -3 -1 +2

+2-3 +3 +1 -3 -1 +3
-2+1-1-3+3 -2+1-1-1-3-1+1

-3 -1 +1 +3+1 -1 -1
+1 -3+1 +1

+1-2+2+1-1-3-3-1 +1 -2
-2+1-1+1 +1+1-2

+2 +1+2-2 -3+2 +1
+1 -1 +1+1 +1-5-1-3
-1+2-3 +2+2 -1-3

+3 -1-1+2-1-1
-1-1-1+3 -1 +3
+1+1+1-3 -2
+2-1 -1 -1 +3 -1
-2+1 +1 -2+1 +1+1

-1 +2-1 +2
-1-1-1+2 -1-1+2
-2+1 +1+1-3 +1+1
+3 -1 +2 -1

+5-1 -1 -1 +4-1
+1 -2 +1+1-3

+1-5+2+1 +1-5+3
+2-1-1 +3-1

+3-4+1 +3-4+1
+2-1 -1

-1 +3-2-1 -1 +5-3

+2 +3-3

-1 +3 +1-1 -1 +1-2

-1-5-1-1
-3+1

+1-2+1-3

+1+2
+1

+3-1

FIGURE 4. Weighls acquired in learning the three prototype patterns shown. (Blanks in the
matrix of weights correspond to weights with absolute values less than or equal to 0.05. Oth­
erwise the actual value of the weight is about 0.05 times the value shown; thus +5 stands for
a weight of +0.25. The gap in the horizontal and vertical dimensions is used to separate the
name field from the visual pattern field.) (From "Distributed Memory and the Representation
of General and Specific Information" by J. L. McClelland and D. E. Rumelhart, 1985, Journal

of Experimental Psychology, 114, 159-188. Copyright 1985 by the American Psychological Asso­
ciation. Reprinted by permission.)
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TABLE 1

RESULTS OF TESTS AFTER LEARNING THE
DOG, CAT, AND BAGEL PATTERNS WITHOUT NAMES

Dog visual pattern: + - + + - - - - + + + + + - - -

Probe: + + + +

Response: +3 -3 +3 +3 -3 -4 -3 -3 +6 +5 +6 +5 +3 -2 -3-2

Cat visual pattern: + - + + - - - - + + - + + - +

Probe: + +-
Response: +3 -3 +3 +3 -3 -3 -3'-3 +6 -5 +6 -5 +3 +2 -3 +2

Bagel visual pattern: + + - + - + + - + - - + + + + -

Probe: + - +

Response: +2 +3 -4 +3 -3 +3 +3 -3 +6 -6 -6 +6 +3 +3 +3-3

Note. From "Distributed Memory and the Representation of General and Specific
Information" by J. L. McClelland and D. E. Rumelhart, 1985, Journal of Experimental

Psychology, 114, 159-188. Copyright 1985 by the American Psychological
Association. Reprinted by permission.

table. What happens when you increase ncycles to 50? Repeat
the experiment, using other portions of the patterns as probes.
How well do you feel the model does in completion of the proto­
types compared to what you might expect from human subjects?

Hints. To do these tests, you must enter E to the prompt presented by
the test routine, and then enter the pattern you wish to test, with
dot (.) or 0 in each location that should be blank in the probe.
The entries should be separated by spaces and terminated with the
word end or an extra return.

Coexistence of the prototype and repeated exemplars. Our last experi­
ment involves examining the model's ability to retain both prototypes and
frequently recurring exemplars. The example is modeled on the one
described in PDP:17 on pages 189-191. In that example, we assumed the
model sees several distortions of the same prototype, intermixed with
presentations of two repeated examples. The patterns came with names in
this example; each new distortion of the prototype was just called dog, but
the repeated examples were called Fido and Rover.

For this example, we imagine that the 16-unit network consists of an
eight-unit name field and an eight-unit visual pattern field, and we use the
name pattern and the first and last groups of four elements from the visual
patterns used in PDP:17. The original patterns are shown in Table 2. The
portion of the visual pattern that is used in the present example is under­
lined. Note that the elements that differ in the original between the
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TABLE 2

RESULTS OF TESTS WITH PROTOTYPE AND SPECIFIC EXEMPLAR PATTERNS

Note. Underlined portions of vectors are those used in the patterns stored in the file dfr.pat. Elements in parentheses are those
that distinguish the visual pattern for each repeated exemplar (Fido and Rover) from the prototype. (Adapted from "Distributed

Memory and the Representation of General and Specific Information" by J. L. McClelland and D. E. Rumelhart, 1985, Journal of
Experimental Psychology, 114, 159-188. Copyright 1985 by the American Psychological Association. Reprinted by permission.)
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prototype and the two exemplars are retained in the shorter versions used
here. In the version of this example we consider here, distortions apply to
both parts of the pattern (name and visual parts) and occur on the repeated
exemplars, as well as the prototype itself. This changes the results in some
details, mainly increasing the number of epochs required for adequate
learning, but the basic qualitative results are the same as reported in
PDP:17.

This example is run with the same parameters as the previous one, so all
you have to do is reinitialize the network and read in the dog, Fido, and
Rover patterns from the file dfr.pat. (If you start again from scratch, do not
forget to set pflip to 0.1.) Use strain (or ptrain, if you prefer) to run 50
epochs of training, and then test the network using the ctest routine, testing
first for the network's ability to fill in the visual pattern from the name and
then testing the network's ability to fill in the name pattern from the visual
pattern. (Set ncycles to 50 for these tests.) These tests require clearing ele­
ments 8 through 15 and 0 through 7, respectively. For example, to test for
the network's ability to fill in the visual pattern for dog, you would enter:

ctest dog 8 15

Set ncycles back to 10, run another 50 epochs, set ncycles to 50 again, and
test again.

Q.6.4.5. How close do you come to reproducing the results shown in Table
2 at the end of 50 epochs? At the end of 100 epochs? In gen­
eral, what do you see as the strengths and weaknesses of this
approach to storing and retrieving representations of categories
and exemplars?

COMPETITIVE LEARNING

In Chapter 5 we showed that multilayer, nonlinear networks are essential
for the solution of many problems. We showed one way, the back propaga­
tion of error, that a system can learn appropriate features for the solution
of these difficult problems. This represents the basic strategy of pattern
association-to search out a representation that will allow the computation
of a specified function. There is a second way to find useful internal
features: through the use of a regularity detector, a device that discovers
useful features based on the stimulus ensemble and some a priori notion of
what is important. The competitive learning mechanism described in
PDP:5 is one such regularity detector. In this section we describe the basic
concept of competitive learning, show how it is implemented in the cl
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program, describe the basic operations of the program, and give a few exer­
cises designed to familiarize the reader with these ideas.

BACKGROUND

The basic architecture of a competitive learning system (illustrated in
Figure 5) is a common one. It consists of a set of hierarchically layered
units in which each layer connects, via excitatory connections, with the
layer immediately above it, and has inhibitory connections to units in its
own layer. In the most general case, each unit in a layer receives an input
from each unit in the layer immediately below it and projects to each unit
in the layer immediately above it. Moreover, within a layer, the units are
broken into a set of inhibitory clusters in which all elements within a clus­
ter inhibit all other elements in the cluster. Thus the elements within a
cluster at one level compete with one another to respond to the pattern
appearing on the layer below. The more strongly any particular unit
responds to an incoming stimulus, the more it shuts down the other
members of its cluster.

There are many variants to the basic competitive learning model. Von
der Malsburg (1973), Fukushima (1975), and Grossberg (1976), among
others, have developed competitive learning models. In this section we
describe the simplest of the many variations. The version we describe was
first proposed by Grossberg (1976) and is the one studied by Rumelhart
and Zipser in PDP:5. This version of competitive learning has the follow­
ing properties:

• The units in a given layer are broken into several sets of non over­
lapping clusters. Each unit within a cluster inhibits every other unit
within a cluster. Within each cluster, the unit receiving the largest
input achieves its maximum value while all other units in the clus­
ter are pushed to their minimum value. 2 We have arbitrarily set the
maximum value to 1 and the minimum value to O.

• Every unit in every cluster receives inputs from all members of the
same set of input units.

• A unit learns if and only if it wins the competition with other units
in its cluster.

2 A simple circuit, employed by Grossberg (J976) for achieving this result, is attained by hav­
ing each unit activate itself and inhibit its neighbors. Such a network can readily be employed
to choose the maximum value of a set of units. In our simulations, we do not use this
mechanism. We simply compute the maximum value directly.
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LAYER 3

InhIbitory Clusters

Excitatory
Connections

LAYER 2

Inhibitory Clusters

LAYER 1

Input Units

Excitatory
Connections

INPUT PATTERN

FIGURE 5. The architecture of the competitive learning mechanism. Competitive learning
takes place in a context of sets of hierarchically layered units. Units are represented in the
diagram as dots. Units may be active or inactive. Active units are represented by filled dots,
inactive ones by open dots. In general, a unit in a given layer can receive inputs from all of
the units in the next lower layer and can project outputs to all of the units in the next higher
layer. Connections between layers are excitatory and connections within layers are inhibitory.
Each layer consists of a set of clusters of mutually inhibitory units. The units within a cluster
inhibit one another in such a way that only one unit per cluster may be active. We think of
the configuration of active units on any given layer as representing the input pattern for the
next higher level. There can be an arbitrary number of such layers. A given cluster contains
a fixed number of units, but different clusters can have different numbers of units. (From
"Feature Discovery by Competitive Learning" by D. E. Rumelhart and D. Zipser, 1985, Cogni­
tive Science, 9, 75-]] 2. Copyright ]985 by Ablex Publishing. Reprinted by permission.)
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• A stimulus pattern Sj consists of a binary pattern in which each ele­
ment of the pattern is either active or inactive. An active element
is assigned the value 1 and an inactive element is assigned the
valueO .

• Each unit has a fixed amount of weight (all weights are positive)
that is distributed among its input lines. The weight on the line
connecting to unit i on the upper layer from unit j on the lower
layer is designated wij' The fixed total amount of weight for unit j
is designated Lwij = 1. A unit learns by shifting weight from its

j
inactive to its active input lines. If a unit does not respond to a
particular pattern, no learning takes place in that unit. If a unit
wins the competition, then each of its input lines gives up some
portion E of its weight and that weight is then distributed equally
among the active input lines. Mathematically, this learning rule can
be stated

A w·· = I actiVej~ E w.
Ll IJ _ IJ

E nactivek

if unit i loses on stimulus k

if unit i wins on stimulus k

where actiVejk is equal to 1 if in stimulus pattern Sk, unit j in the
lower layer is active and is zero otherwise, and nactivek is the
number of active units in pattern Sk (thus nactivek = Lactivejk)' 3

j

Figure 6 illustrates a useful geometric analogy to this system. We can
consider each stimulus pattern as a vector. If all patterns contain the same
number of active lines, then all vectors are the same length and each can
be viewed as a point on an N-dimensional hypersphere, where N is the
number of units in the lower level, and therefore, also the number of input
lines received by each unit in the upper level. Each x in Figure 6A
represents a particular pattern. Those patterns that are very similar are near
one another on the sphere, and those that are very different are far from
one another on the sphere. Note that since there are N input lines to each
unit in the upper layer, its weights can also be considered a vector in N­
dimensional space. Since all units have the same total quantity of weight,
we have N-dimensional vectors of approximately fixed length for each unit

3 Note that for consistency with the other chapters in this book we have adopted terminology
here that is different from that used in the PDP:5. Here we use f where g was used in PDP:5.

Also, here the weight to unit i from unit) is designated wij. In PDP:5, i indexed the sender
not the receiver, so wij referred to the weight from unit i to unit).



192 COMPETITIVE LEARNING: BACKGROUND

A

.-'

FIGURE 6. A geometric interpretation of competitive learning. A: It is useful to conceptual­
ize stimulus patterns as vectors whose tips all lie on the surface of a hypersphere. We can
then directly see the similarity among stimulus patterns as distance between the points on the
sphere. In the figure, a stimulus pattern is represented as an x. The figure represents a popu­
lation of eight stimulus patterns. There are two clusters of three patterns and two stimulus pat­
terns that are rather distinct from the others. B: It is also useful to represent the weights of
units as vectors falling on the surface of the same hypersphere. Weight vectors are
represented in the figure as u's. The figure illustrates the weights of two units falling on rather
different parts of the sphere. The response rule of this model is equivalent to the rule that
whenever a stimulus pattern is presented, the unit whose weight vector is closest to that
stimulus pattern on the sphere wins the competition. In the figure, one unit would respond to
the cluster in the northern hemisphere and the other unit would respond to the rest of the
stimulus patterns. C: The learning rule of this model is roughly equivalent to the rule that
whenever a unit wins the competition (i.e., is closest to the stimulus pattern), that weight vec­
tor is moved toward the presented stimulus. The figure shows a case in which there are three
units in the cluster and three natural groupings of the stimulus patterns. In this case, the
weight vectors for the three units will each migrate toward one of the stimulus groups. (From
"Feature Discovery by Competitive Learning" by D. E. Rumelhart and D. Zipser, 1985, Cogni­
Tive Science, 9, 75-112. Copyright 1985 by Ablex Publishing. Reprinted by permission.)
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in the cluster. 4 Thus, properly scaled, the weights themselves form a set of
vectors that (approximately) fall on the surface of the same hypersphere.
In Figure 6B, the o's represent the weights of two units superimposed on
the same spliere with the stimulus patterns. Whenever a stimulus pattern
is presented, the unit that responds most strongly is simply the one whose
weight vector is nearest that for the stimulus. The learning rule specifies
that whenever a unit wins a competition for a stimulus pattern, it moves a
fraction E of the way from its current location toward the location of the
stimulus pattern on the hypersphere. Suppose that the input patterns fell
into some number, M, of "natural" groupings. Further, suppose that an
inhibitory cluster receiving inputs from these stimuli contained exactly M
units (as in Figure 6C). After sufficient training, and assuming that the
stimulus groupings are sufficiently distinct, we expect to find one of the
vectors for the M units placed roughly in the center of each of the stimulus
groupings. In this case, the units have come to detect the grouping to
which the input patterns belong. In this sense, they have" discovered" the
structure of the input pattern sets.

Some Features of Competitive Learning

There are several characteristics of a competitive learning mechanism
that make it an interesting candidate for study, for example:

• Each cluster classifies the stimulus set into M groups, one for each
unit in the cluster. Each of the units captures roughly an equal
number of stimulus patterns. It is possible to consider a cluster as
forming an M-valued feature in which every stimulus pattern is
classified as having exactly one of the M possible values of this
feature. Thus, a cluster containing two units acts as a binary
feature detector. One element of the cluster responds when a par­
ticular feature is present in the stimulus pattern, otherwise the
other element responds .

• If there is structure in the stimulus patterns, the units will break up
the patterns along structurally relevant lines. Roughly speaking,
this means that the system will find clusters if they are there.

4 It should be noted that this geometric interpretation is only approximate. We have used the

constraint that L wi) = 1 rather than the constraint that L wJ = 1. This latter constraint
j j

would ensure that all vectors are in fact the same length. Our assumption only assures that
they will be approximately the same length.
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• If the stimuli are highly structured, the classifications are highly
stable. If the stimuli are less well structured, the classifications are
more variable, and a given stimulus pattern will be responded to
firstby one and then by another member of the cluster. In our
experiments, we started the weight vectors in random directions
and presented the stimuli randomly. In this case, there is rapid
movement as the system reaches a relatively stable configuration
(such as one with a unit roughly in the center of each cluster of
stimulus patterns). These configurations can be more or less
stable. For example, if the stimulus points do not actually fall into
nice clusters, then the configurations will be relatively unstable and
the presentation of each stimulus will modify the pattern of
responding so that the system will undergo continual evolution. On
the other hand, if the stimulus patterns fall rather nicely into clus­
ters, then the system will become very stable in the sense that the
same units will always respond to the same stimuli.5

• The particular grouping done by a particular cluster depends on the
starting value of the weights and the sequence of stimulus patterns
actually presented. A large number of clusters, each receiving
inputs from the same input lines can, in general, classify the inputs
into a large number of different groupings or, alternatively, dis­
cover a variety of independent features present in the stimulus
population. This can provide a kind of distributed representation of
the stimulus patterns.

• To a first approximation, the system develops clusters that mml­
mize within-cluster distance, maximize between-cluster distance,
and balance the number of patterns captured by each cluster. In
general, tradeoffs must be made among these various forces and
the system selects one of these tradeoffs.

IMPLEMENTATION

The competitive learning model is implemented in the cl program. The
model implements a single input (or lower level) layer of units, each con­
nected to all members of a single output (or upper level) layer of units.
The basic strategy for the cl program is the same as for bp and the other
learning programs. Learning occurs as follows: A pattern is chosen and the

5 Grossberg (J 976) has addressed this problem in his very similar system. He has proved that
if the patterns are sufficiently sparse and/ or when there are enough units in the cluster, then a
system such as this will find a perfectly stable classification. He also points out that when
these conditions do not hold, the classification can be unstable. Most of our work is with
cases in which there is no perfectly stable classification and the number of patterns is much
larger than the number of units in the inhibitory clusters.
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pattern of activation specified by the input pattern is clamped on the input
units. Next, the net input into each of the output units is computed. The·
output unit with the largest input is determined to be the winner and its
activation value is set to 1. All other units have their activation values set
to O. The routine that carries out this computation is

compute_output() {

/* initialize all output units */
for (i = ninputs; i < nunits; i++)

netinput[i] = 0.0;
activation[i] = 0.0;

/* compute the netinput for each output unit i */
for (j = Oi j < ninputsi j++) {

if (activation [j]) {
for (i = ninputs; i < nunits; i++)

netinput[i] += weight[i] [j]i

/* find the winner */

for (winner = ninputs, i = ninputsi i < nunitsi i++) {
if (netinput[winner] < netinput[i])

winner = ii

/* set the winner's activation to 1.0 */
activation[winner] = 1.0i

After the activation values are determined for each of the output units,
the weights must be adjusted according to the learning rule. This involves
increasing the weights from the active input lines to the winner and
decreasing the weights from the inactive lines to the winner in such a way
that the total amount of weight is kept equal to 1.0. This is done by the
following routine:

change_weights ()
{

/* first we determine how many input lines are on */
for (j = Oi j < ninputs; j++)

if (activation[j])
nactive += 1;
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/* if no input lines are on no learning takes place */
if(nactive == 0) return;

/* otherwise, we adjust the winner's weights */
for (j = 0; j < ninputs; j++) {

weight [winner] [j] +=
lrate*(activation[j]/nactive) -

Irate * weight [winner] [j];

RUNNING THE PROGRAM

The cl program is run in much the same way as the programs already
described. In general, the program is called with a .tem file and a .str file.
Because of the simplicity of the cl architecture (each input unit is con­
nected to each output unit and the output units form a single inhibitory
cluster), a .net file is not needed; instead, ninputs and noutputs are defined
near the top of the .str file. This leads the program to create a network of
ninputs input units connected to a cluster of noutputs output units. The
connections are all positive and sum to 1. Generally, a .pat file is used to
specify a list of patterns for use in training and testing.

The facilities for training and testing are the same as those used in the
other learning programs. The strain command is used to train the network
using a fixed sequential order of training in each epoch. The ptrain com­
mand is used to train the network using a permuted order of presentations
in each epoch. Both commands run nepochs of training, ending when inter­
rupted. Since there is no teacher, there is no total sum of squares or error
criterion.

Commands

The commands in cl are a subset of those for bp and therefore need no
further explication.

Variables

The following list mentions only those variables that are new or changed
in the cl program.
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stepsize

The default stepsize in cl is epoch; this means that a step consists of
going_ through each of the input patterns, presenting the pattern,
computing the activations, and determining the winner, and, if ljlag
is set, changing the weights on the winner; then, after this has been
done for each of the patterns, displaying the relevant variables on
the screen. Other possible values of stepsize are pattern, which
causes updating/ pausing to occur after each pattern presentation,
and nepochs, which causes updating/pausing to occur only at the
end of nepochs.

param/ Irate
Determines the percentage of the winner's weight that is redistrib­
uted on each learning trial.

OVERVIEW OF EXERCISES

We provide two exercises for the cl program. The first uses the Jets and
Sharks data base to explore the basic characteristics of competitive learning.
The second applies competitive learning to the difficult problem of graph
partitioning. A special case of this is the dipole problem, considered at the
end of Ex. 6.6.

Ex. 6.5. Clustering the Jets and Sharks

The Jets and Sharks data base provides a useful context for studying the
clustering features of competitive learning. We have prepared the files
2jets.tem, 2jets.str, jets.pat, and a couple of .100 files for this example. The
file jets.pat contains the feature specifications for the 27 gang members.
(The 2 in the name 2jets.tem indicates that the network has an output clus­
ter of two units.) The pattern file is set up as follows: The first column
contains the name of each individual. The next two tell whether the indi­
vidual is a Shark or a Jet, the next three columns correspond to the age of
the individual, and so on. Note that there are no inputs corresponding to
name units; the name only serves as a label for the convenience of the
user. To run the program type

cl 2jets. tem 2jets.str

The resulting screen display (shown in Figure 7) shows the epoch number,
the name of the current pattern, the output vector, the inputs, and the
weights from the input units to each of the output units. Between the
inputs and the weights is a display indicating the labels of each feature.
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cr--.
displ examl get/ savel set/ clear do log newstart ptrain quit reset
run strain tall test

epochno 0
cpname

Art

output

o 1

weightsinput
unit 1unit 2

Gang

10 Je Sh 142 67
Age

001 20 30 40 705 818
du

100 JH HS co 02 13 425
'·Iar

100 si nladi 1 1429 116
Job

100 pu bg bo 168 10124 11

FIGURE 7. Initial screen display for the cI program running the Jets and Sharks example with
two output units.

The inputs and weights are configured in a manner that mirrors the
structure of the features. In this case, the pattern for Art is the current pat­
tern. The first row of inputs indicate the gang to which the individual
belongs. In the case of Art, we have a 1 on the left and a 0 on the right.
This represents the fact that Art is a Jet and not a Shark. Note that there is
at most one 1 in each row. This results from the fact that the values on the
various dimensions are mutually exclusive. Art has a 1 for the third value
of the Age row, indicating that Art is in his 40s. The rest of the values are
similarly interpreted. The weights are in the same configuration as the
inputs. The corresponding weight value is written below each of the two
output unit labels (unit_l and unit_2). Each cell contains the weight from
the corresponding input unit to that output unit. Thus the upper left-hand
value for the weights is the initial weight from the Jet unit to output unit 1.
Similarly, the lower right-hand value of the weight matrix is the initial
weight from bookie to unit 2. The initial values of the weights are random,
with the constraint that the weights for each unit sum to 1.0. (Due to scal­
ing and roundoff, the actual values displayed should sum to a value some­
what less than 100.) The Irate parameter is set to 0.05. This means that on
any trial 5% of the winner's weight is redistributed to the active lines. It
should be noted that the 2jets.str file has already read in the jets.pat pattern
file.

Now try running the program using the ptrain command. (Note that
ptrain is better than strain for the competitive learning procedure since the
order can have a large effect on exactly what is learned.) Since nepochs is
set to 20, the system will stop after 20 epochs. Look at the new values of
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the weights. Try several more runs, using the newstart command to reini­
tialize the system each time. In each case, note the configuration of the
weights. You should find that usually one unit gets about 20% of its weight
on the jets line and none on the sharks line, while the other unit shows the
opposite pattern.

Q.6.5.1. What does this pattern mean in terms of the system's response to
each of the separate patterns? Explain why the system usually
falls into this pattern.

Hints. You can find out how the system 'responds to each subpattern by
using the tall command and stepping through the set of
patterns-noting each time which unit wins on that pattern (this is
indicated by the output activation values displayed on the screen).

Q.6.5.2. Examine the values of the weights in the other rows of the weight
matrix. Explain the pattern of weights in each row. Explain, for
example, why the unit with a large value on the Jet input line has
the largest weight for the 20s value of age, whereas the unit with
a large value on the Shark input line has its largest weight for the
30s value of the age row.

Now repeat the problem and run it several more times until it reaches a
rather different weight configuration. (This may take several tries.) You
might be able to find such a state faster by reducing Irate to a smaller value,
perhaps 0.02.

Q.5.3. Explain this configuration of weights. What principle is the system
now using to classify the input patterns? Why do you suppose
reducing the learning rate makes it easier to find an unusual
weight pattern?

We have prepared a pattern file, called ajets.pat, in which we have
deleted explicit information about which gang the individuals represent.
Load this file by typing

get patterns ajets.pat

Q.5.4. Repeat the previous experiments using these patterns. Describe
and discuss the differences and similarities.

Thus far the system has used two output units and it therefore classified
the patterns into two classes. We have prepared a version with three output
units. This version can be accessed by the command:

cI 3jets.tem 3jets.str
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Q.6.5.5. Repeat the previous experiments using three output units.
Describe and discuss differences and similarities.

Ex. 6.6. Graph Partitioning

Recall that the competitive learning mechanism with n output units has
a propensity to put the stimulus patterns in n classes with the classes maxi­
mally distinct and the numbers of patterns per class approximately equal. It
turns out that there is an interesting and difficult problem, the graph parti­
tioning problem, which requires just that sort of solution. The problem,
roughly stated, is this: Given a connected graph of n nodes, each of which
is connected to one or more other nodes in the network, divide the graph
into two parts with half of the nodes in each while minimizing the number
of links that connect nodes from the two different classes. We can map
this problem into a problem that competitive learning can work on in the
following way. We have two output units, one for each of the two groups
into which we are to classify the nodes. There must be n input units, one
for each of the nodes in the graph. There is a stimulus pattern for each of
the links of the graph. Each stimulus pattern consists of two units on and
the rest off. If there is a link from unit i to unit j in the graph, then there
is a pattern with units i and j both turned on and the rest turned off. We
have prepared a very simple example of this. Files graph. tern, graph.str,
graph.pat, and so on contain the relevant information. Figure 8 shows the
initial screen layout and the graph in question. In this case, the graph

cI'--.
d1Sp/ examI getl savel setl clear do log new3tart ptrain ~Jit reset
run strain tall test

epochno 0

output

o 0
"'eightsinputs

unit 1unit 2

0

0 2313 613I \I\
0

0- 0019111131616 1519
\

I\I
0

0 018 29

FIGURE 8. Initial screen display for the graph problem.
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consists of two clusters of nodes with a single link between them. The best
solution is obviously to separate the two lobes and cut the single link
between. N()w run the program with the command

cl graph. tern graph.str

Q.6.6.1. Using ptrain, run the program several times and note the solutions
the system finds. To what degree do these solutions solve the
graph partitioning problem? Explain the observed results. Try the
same thing with various values for /rate. How does this change the
results? Why?

Q.6.6.2. Create your own graph and evaluate the results of the network
with respect to the graph partitioning problem.

It might be noted that the dipole problem, discussed at length in PDP:5
(pp. 170-177) is an example of a rather simple graph partitioning problem.
In this problem, the patterns consist of pairs of adjacent points on a two­
dimensional grid (adjacent points are points that are next to each other on
the same row or column). This is equivalent to the graph partioning prob­
lem in which each point is connected to every adjacent point. A set of files
called 16.tern, 16.str, and 16.pat (together with associated ./00 files) are pro­
vided for this example, if you choose to explore it. Just start up the cl pro­
gram with the files 16. tern and 16.str and enter ptrain to train the network,
as in all of the examples already discussed.




